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Abstract. Engineers design functional behaviour, but testing for cyber-
security is difficult because it requires examining the system beyond the
functional design. Fuzz testing (multiple calls to systems interfaces over a
wide value space) has been successfully used to reveal vulnerabilities, yet
it has seen little use in the automotive domain. An automated analysis
of the in-vehicle network specification can be used to generate fuzz tests.
These unexpected system inputs will reveal unconsidered operational
cases to reveal security flaws prior to manufacture.

1 Motivation

Automotive cyber-security is important because hacking a vehicle is a safety is-
sue [8]. Although engineers are primarily concerned with correctly implementing
the operational requirements of a vehicle, they do so with safety in mind. The
testing regime of a vehicle is rigorous and extensive, with the ISO 26262 standard
addressing the safety critical electrical and electronics components. However, the
advancement of technology and the advent of the connected and autonomous
vehicle (CAV) have added extra Non-Functional Requirements (NFRs) [4]. The
cyber-security NFR can affect safety. The automotive industry has begun to
face this issue, publishing SAE J3061 and is in the process of updating ISO
26262 [10].

Yet the testing challenge remains due the complexity of the modern vehicle
and the number and variety of possible cyber attacks. The modern vehicle is
highly dependent upon networked computers, referred to as Electronic Control
Units (ECUs). A typical mid-range 2017 executive car has 29 ECUs controlling
a wide range of subsystems [2]. There are several protocols available to intercon-
nect ECUs, the Controller Area Network (CAN) being the most popular (22 of
the 29 ECUs in the example executive car have a CAN connection). CAN is usu-
ally exposed via the easily accessible On-board Diagnostics port (OBD). Some
of the issues related to vehicle hacking revolve around manipulation of the mes-
sages flowing on the CAN data bus. A compromised ECU or man-in-the-middle
(MITM) attack (for example an aftermarket device attached to a vehicle’s OBD
connector) can spoof the messages transmitted, affecting normal operation and
threatening vehicle and passenger safety.

The in-vehicle network design (ECU nodes, ECU data interfaces and inter-
ECU data flows) is defined in a network database file, known as the DBC file.



When an adversary injects messages on to the CAN bus it can violate this
DBC design. The vehicle system must be resilient to such misuse. To ensure this
resilience the CAN communications must be tested beyond what is defined in
the DBC file.

2 Why fuzz testing?

How do tests get generated for CAN if the design does not contain adequate
cyber-security information? Current designs focus on function, despite meth-
ods being available that allow attacks against systems to be described (such as:
misuse cases; annotations; model stereotypes; and Aspect-oriented Modelling
(AOM) [9]). However, such modelling methods must not detrimentally impact
the existing engineering processes due to teams facing time and resource con-
straints.

It remains to be seen if the design process adapts to integrate cyber-attack
considerations into the ECU designs. However, the DBC file can be used to
improve vulnerability detection. Fuzz testing (multiple calls to systems inter-
faces over a wide value space) is considered a useful hacker’s tool [6] to reveal
system weaknesses. Yet fuzzing sees little use in the automotive industry [1].
The capturing of the in-vehicle network design into the DBC file presents an
opportunity to automatically perform pre-production fuzz testing in the same
environment as functional testing, using simulations, and hardware-in-the-loop
(HIL) or software-in-the-loop (SIL) systems [5].

Several fuzzer packages exist that can be adapted to automotive use. The
open source Peach Fuzzer is now commercialised and that company offers services
to the automotive industry. However, studies of the effectiveness of automotive
fuzzing prior to series production are required.

3 ECU Fuzz Testing

Authoring test cases to cover all permutations is an error prone task and typi-
cally fuzz tests are automatically generated. We propose that the existing design
process (represented by the left part of Figure 1, blocks numbered 1 to 5) is ex-
panded with an automated analysis of the DBC file to generate the fuzz tests
(represented by the blocks numbered 6 and 7 in Figure 1). The fuzzing is in-
tended to reveal system weaknesses in the System Under Test (SUT), or for a
single ECU the Device Under Test (DUT). For the following process description
the step number matches the block number in Figure 1.

1. Normal vehicle system design process where models and tools are used to
design sensor inputs, ECUs, and the communication between them.

2. The outputs from the design process include:

(a) Test cases for the known operational design.
(b) The code that executes on the ECUs.



Fig. 1. Fuzzing tests from in-vehicle network specifications

(c) The DBC communications database file which defines the network prop-
erties.

3. Typical testing environment for designs (simulations or hardware-in-the-loop
test rigs).

4. Test results feedback into the designs.
5. Once the design is signed-off it moves to manufacture.
6. Additionally, we propose that the DBC file analysis generates test cases to

execute against the SUT or DUT. Going beyond the pure random tests of
the black-box fuzz testing, the DBC file is a template for grey-box test-
ing. The fuzzing test cases will be created by modifying slightly the CAN
message components (id, data length, payload and message frequency), giv-
ing them values in the region space close to their definition. For example a
payload may have a DBC signal definition for an engine temperature, e.g.
SG Comf EngTemp : 16|8@1- (1,32) [-50|150]. The fuzzer can vary the
component elements (starting bit, bit length, endianness, sign, conversion
factor and offset, and value), then monitor resultant system behaviour (one
of the challenges of the research). This will lead, for example, to tests that
explore unrealistic or unhandled component values, or rapid value changes
in unrealistic time periods, to reveal vulnerabilities (caused by flaws in the
code handling the defined communications). Those vulnerabilities may reveal
unexpected data (confidentiality), affect system values (integrity) or prevent
certain operations (availability).

7. The generated fuzzing test cases execute as a compromised ECU or a MITM
illicit node on the system simulation or HIL rig. If the system has been de-
signed correctly it will respond in a safe manner. This can include illegal
states not being accepted, error codes registered, triggering of a Malfunction
Indicator Lamp (MIL), or ECUs entering a limp home state. If an unexpected
system response occurs then the result is used to inform the functional spec-
ifications or design models [3].



Fuzz testing has been successful in finding vulnerabilities in other domains [7].
With vehicles now connected cyber-physical systems automotive engineering
needs to apply similar techniques to reduce vulnerabilities. The research is pro-
totyping the methodology outlined above. Validation of the methodology can
provided a useful tool extendable to other sectors, since CAN is used in indus-
trial, medical and other transport domains.
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